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COMPUTATIONS FOR A JET IMPINGING OBLIQUELY 
ON A FLAT SURFACE 

SHU-HA0 CHUANG AND CHING-YUAN WE1 
Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan 40227, R.O.C. 

SUMMARY 
A SIMPLE-C algorithm and Jones-Launder k-e two-equation turbulence model are used to simulate a two- 
dimensional jet impinging obliquely on a flat surface. Both the continuity and momentum equations for the 
unsteady state are cast into suitable finite difference equations. The pressure, velocity, turbulent kinetic 
energy and turbulent energy dissipation rate distributions are solved and show good agreement with various 
experimental data. The calculations show that the flow field structure of the jet impinging obliquely on a flat 
surface is strongly affected by the oblique impingement angle. The maximum pressure zone of the obliquely 
impinging jet flow field moves towards the left as the oblique impingement angle is decreased. 
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INTRODUCTION 

The fan-powered vertical-take-off-and-landing (VTOL) military aircraft has increasingly required 
improved numerical simulation methods to predict its performance, particularly with regard to 
propulsion-induced aerodynamic effects in the hover mode of VTOL flight. The problem is not an 
easy one since the hover mode of a VTOL aircraft is characterized by complicated flow field 
phenomena. Special attention has to be paid to the effect of the single, planar, unvectored lift jet 
on the ground surface.' The jet exits from a slot of width D in a contoured upper surface at a 
distance H above the ground plane, as shown in Figure 1. The two-dimensional normally or 
obliquely impinging jet flow field can be characterized by the following three regions:' the free jet 
region in which the flow is essentially the same as that of a jet issuing into an unbounded region; 
the impingement region in which the flow changes direction with a large pressure gradient; and 
the wall-jet region in which the flow traverses the ground surface. 

Solutions for a plane turbulent impinging jet prior to 1970 were reviewed by Wolfshtein.2 
Experimental measurements of an impinging jet with a round nozzle were made by C ~ l e m a n , ~  
who found that the flow was essentially characterized by the above three regions. The static 
pressure distribution of the ground plane in the impingement region has been solved by the frozen 
vorticity ~ o n c e p t . ~  Theoretical analyses of impinging jet flow have been concerned with finding 
solutions for several separate regions and then combining these into a complete s ~ l u t i o n . ~ . ~  The 
advantage of this procedure is that it enables one to select an adaptive model for each separate 
region, thus avoiding the complex problem. 

The two-dimensional Navier-Stokes equations with ground effects were studied by Bower and 
Kotansky,' who first utilized the augmented central difference and one-equation turbulence 
model to simulate impinging jet flow. In order to study the interaction between lift jet and ground 
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Figure 1. Basic configuration of obliquely impinging jet 

plane for VTOL aircraft, one needs to use experimental measurements and numerical com- 
putation to investigate the effect of impinging jet flow on various upper flat-plate profiles.' Two- 
and three-dimensional impinging jet flows were studied by Bower and co-workers, 9, lo who 
utilized the streamfunction-vorticity and Jones-Launder k--E two-equation turbulence model. 
Their results showed good agreement between numerical predictions and experimental data. 
Incompressible, inviscid, rotational impingement problems have also been considered; the 
computations for two-dimensional, axisymmetric, normally impinging and obliquely impinging 
jets compared well with observations. Agarwal and Bower" and Looney and WalshI3 used the 
same turbulence model and compressible equations as Rubel" to predict impinging jet flow and 
also found good agreement with experimental results. The above solution methods were limited 
to the use of streamfunction-vorticity for solving the Navier-Stokes equations. 

In order to further understand the structure of impinging jet flow, one needs to use primitive 
variables for the solution. In viscous flow the fine mesh spacing makes the MacCormack scheme 
with the explicit method'4. l 5  extremely costly. Implicit methods16." make the use of a large time 
step possible but require the inversion of block tridiagonal matrices. Numerical simulation of 
impinging jet flow by the Beam-WarmingI6 method was done by Hwang and Liu." A method 
developed by MacCormack" eliminated the inversion disadvantage by introducing a pre- 
dictor-corrector scheme. Unfortunately, this method was demonstrated only for a simple case. 
Numerical simulation of an impinging jet on a flat plate by the Lavante-ThompkinsZo method 
was performed by Chuang.' These numerical methods have some disadvantages; namely, the 
Jacobians of the co-ordinate transformation and dissipation terms often make the solution 
divergent because these terms are the flow variables. In addition, the primitive solutions for the 
inversion of the co-ordinate transformation are also very difficult, especially in a complex 
geometry flow field. 

In order to overcome these disadvantages, in this paper we provide a well-known numerical 
method, i.e. the SIMPLEX algorithm,'l to solve the two-dimensional viscous compressible 
flow of a jet impinging obliquely on a flat plate, where the oblique impingement angle 8 is 
in the range 90" d 8 d 50". Some of the results are compared with experimental data 
(8=90", 80", 70°) '0* '2~22~23 and found to be good in agreement. The oblique impingement angle 
is seen to a strong parameter for impinging jet flow in the present observations. 

THEORETICAL MODEL 

Assumptions 

In order to simplify the study, the following assumptions are made. 

1. The flow is that of a single two-dimensional obliquely impinging jet. 
2. Both the upper plate surface and the ground plane are adiabatic and thermal effects on the 

viscosity are not considered. 
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3. Gravitational effects are not considered. 
4. Cross-flow is not coupled with the impinging jet flow. 

Gooerning equations 

Navier-Stokes equations can be written as24 
The general form of the transport equation for the unsteady two-dimensional compressible 

where the transfer coefficient r, the source term S and the transport variable 4 are as defined in 
Table I. The total effective viscosity of the flow is 

P e  = PI+PV 

where p l  and pt are the molecular and eddy viscosity respectively and p, is known from the k-& 
turbulence model as25 

pt= C,Pk*/E. 

NUMERICAL METHOD 

For the unsteady Navier-Stokes equations the time variation is taken to be of parabolic type and 
the space variation of elliptic type. Hence time marching and space iteration were used. 

The difficulty in solving the Navier-Stokes equations is that the non-linear term and the 
pressure term are unknown. In order to solve the main variables u, u and p ,  Patankar26 and 

Table I. Governing equation variables 

4 r S s p /  v SCI v 

U 

u 

aP 
a x  --+S" P e  

aP 
aY 

- -+S" P e  

0 

0 

C ,  = 1.44, C2 = 1.72, C, = 0-09, ah = 1.0, u, = 1.3 
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Spalding introduced the SIMPLE algorithm technique. The SIMPLE-C (SIMPLE-consistent) 
algorithm subsequently developed by van Doormaal and Raithby2' and Latimer and Pollard2' 
has a better residual mass convergence rate than the SIMPLE algorithm.28 The present 
calculations are performed using the SIMPLE-C algorithm and a power-law scheme. 

Finite diflerence equations 

First the general form of equation (1) can be rewritten as 
Integration over a control volume cell was used to construct the finite difference equations. 

aJx  aJ, - +-+-- s, a t  ax ay 

where 

Integration over the control volume for (1) gives 

where dV = dx dy dz = dx dy. The finite difference equation for (3) with a linearized source term 
is given as 

where 

(i = e, w), 
over interface i 

Ji = J,dx (i = n, s). J I  over interface i 

Integration over a control volume cell for the continuity equation gives 

+ Fe- Fw + Fn- F, = 0. ( 5 )  
(P ,  - P W A Y  

At 

Subtracting (5 )  multiplied by 4, from (4) gives 

where Fi is the mass flow rate for surface i of the control volume. Then the total flux of a control 
volume cell can be written as 
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where 

a, = D,A(IPil)+[-Fi,O] (i=e,n), 

ai=DiA(IPil)+[Fi,O] (i=w,s), 

Pi(=Fi/Di) is the Peclet number for surface i, A(IPiI) is a function of Pi and Di=riAi/(6x),. 
Substituting these relations into (6), we obtain 

a p  #p = a e 4 e  + a w  #w + a s # s  + an#n + b, (8) 

where 

b = S,AxAy+ai+i,, 

a: = piAxAyfAt, 

up =ae + a,+ a,+ a, + a; - S,AXAY. 

Solution technique 

power-law scheme is described as follows:26 
The SIMPLE-C algorithm with a power-law scheme26 was used to treat the problem. The 

P,> - 10, ae/Dc= -pe, 

-1O<P,<O, a,/D,=(l+O.lP,)~-Pe, 

o<P,<~o,  a , / ~ , = ( 1 - 0 , i ~ , ) 5 ,  

P, > 10, ae/De = 0. 

The general form can be written as 

a, = D, [O, ( 1 - 0.1 I F, 1 / ~ , ) 5 3  + [O,  - F, 1. 
The same procedure is used for a,, a,, and an. Details of the SIMPLE-C algorithm2'S2' 
calculation procedures will not be repeated here. The TDMA and line-by-line sweep process was 
used at each time step iteration to calculate the governing non-linear finite difference equations. 
Underrelaxation was used at each time step to accelerate convergence. The underrelaxation 
factors used in the present calculations are shown in Table 11. 

Initial values and boundary conditions 

space iteration method. 
Initial values must be given for the time-marching method and boundary conditions for the 

Initial values. The velocity, kinetic energy and turbulence energy dissipation rate were taken as 
zero except for the inlet condition and relative pressure. 

Table 11. Underrelaxation factorsf 
~ 

U V k E P PI 
~~ 

0 2  0-2 0.3 0.3 0 4  0.4 
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Boundary conditions 

At the inlet 

(a) A uniform initial inlet velocity was used: 

u = K,, case, u = c,, sin 8, 

k = 0003 V k ,  

(b) An initial nozzle velocity profile was chosen from Reference 12: 

E = C, k3'2/0*03( 012). 

3*83<x/D<4*18, 
U =  5, cos O( - 1 2 0 0 ~ ~  + 3 6 0 ~  + 120)/147 
v = K,, sin O( - 1200x2 + 360x + 120)/147 

'='} v = o  xfD24.18, 

k = 0.003 ( u2 + u'), E = C,k3/2/0.03(D/2). 

At the outlet 
a(p/ax = 0, v = o  

( 4  = u, k, E, p ;  assuming fully developed flow). 

At the wall 

(no-slip conditions); k and E were handled by the wall f u n c t i ~ n . ~ ~ ~  29*30 

u= 0, v =  0 

Grid system 

A staggered grid26 arrangement of integration over the control volume was used to avoid wavy 
phenomena: x-direction-non-uniform grid, expanding the stretching factor (RATIO) along both 
sides from the nozzle centre, with RATIO = 1-05-1.25 (64 grid points); y-direction-uniform grid 
(68 grid points). 

RESULTS AND DISCUSSION 

In the present analysis the parameters are 8 = 90"-50", H = 2, W = 7.36 and Re = 2 x lo4. The 
convergence rate of residual mass with time marching is shown in Figure 2. Two recirculation 
regions of complex structure were formed on either side of the impinging jet flow as shown in 
Figure 3. The centreline velocity decay for the normally impinging jet is shown in Figure 4. The 
present results with an initial velocity profile chosen from Reference 12 (case (b)) are in good 
agreement with the experimental data of Bower et a/." The centreline velocity with a uniform 
initial velocity profile (case (a)) is slightly higher than that of the experimental data; this is 
attributed errors arising from viscous effects due to nozzle contraction. The same phenomenon 
was also found in the numerical prediction of Law and Masliyah3' and van Heiningen et al.32 
The centreline pressure distribution shown in Figure 5 can also explain this phenomenon. 
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Figure 2. Convergence rate ( A t  = 0.02) 
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Figure 3. Streamline flow pattern for 0 = 90" 
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Figure 5. Centreline pressure and velocity distributions for 0 = 90" 
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Figure 6. Ground plane pressure distributions for 0 = 90" 

The computed pressure distribution of the ground plane for 64 x 68 grid points is compared 
with the experimental data of Gardon and Akfirat" and Hsiao and C h ~ a n g ~ ~  in Figure 6 and 
found to be in good agreement. The ground plane pressure distribution for 64 x 46 grid points is 
also shown in Figure 6. The calculated results deviate from the experimental data in this case, 
particularly downstream of the ground plane, owing to the diffusion error of grid points with 
large grid size. The pressure contours of the normally impinging jet flow are shown in Figure 7. 
A larger pressure and pressrue gradient are seen in the impingement region, with lower pressure 
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Figure 7. Pressure contours for 0 = 90"; broken lines indicate negative pressure 
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Figure 8. Turbulent kinetic energy contours for 0 = 90" 
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Figure 9. Turbulent energy dissipation rate contours for 0 = 90" 
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Figure 10. Streamline flow pattern for 8 = 80" 
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Figure 11.  Streamline flow pattern for 8 = 70" 
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Figure 12. Streamline flow pattern for 0 = 50" 
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in the recirculation zones. A larger turbulent kinetic energy is seen on either side of the normally 
impinging jet and on the ground plane in Figure 8. Both sides of the jet flow were induced by the 
main jet flow. The induced fluid flow is dominated by viscous forces and the main jet flow is 
dominated by inertial forces; the larger turbulence fluctuation and kinetic energy for the two sides 
of the jet flow are produced by the interaction between these viscous and inertial forces. The 
larger turbulent kinetic energy zone appearing in the ground plane is due to flow deflection and 
acceleration. The turbulent energy dissipation rate contours are shown in Figure 9; the physical 
phenomena are the same as in Figure 8. 

The streamlines of the obliquely impinging jet for 8=80", 70" and 50" are shown in Figures 
1&12 respectively. The sizes of the recirculation zones on the two sides of the jet change when the 
oblique impingement angle is decreased. The size of the left recirculation zone decreases and that 
of the right recirculation zone increases as 8 is changed from 80" to 50". Both recirculation zones 

2 I 6 8 0 
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Figure 13. Upper plate surface pressure distributions for B = W", 80", 70", 50" 
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Figure 14. Ground plane pressure distributions for 8 = 80", 70" 
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at various oblique impingement angles satisfy energy conservation if we take the size of the 
recirculation zone as the value of the energy. The lift force of the upper plate increases with 
increasing oblique impingement angle as shown in Figure 13. The pressure distributions of the 
ground plane for 6 = 80", 70" and 50" are shown in Figures 14 and 15. The calculated results of 
the ground plane pressure distributions for 6 = 80" and 70" are compared with the experimental 
data of Hsiao and ChuangZ3 in Figure 14 and found to be good in agreement. The maximum 
pressure location moves to the left and the value of the maximum pressure decreases as the 
oblique impingement angle is decreased. The pressure contours for 8 = 80", 70" and 50" are 
shown in Figures 16-18 respectively. The maximum pressure zone moves to the left as 8 changes 
from 80" to 50". The pressure of the flow almost becomes negative when the oblique impingement 
angle is 50". The turbulent kinetic energy of the impingement region gradually decreases as the 
oblique impingement angle is decreased owing to the smaller deflection for smaller oblique 
impingement angle, as shown in Figures 19-21. The size of the left recirculation zone gradually 
decreases due to compression by the obliquely impinging jet fluid flow and the turbulent kinetic 

-5.9 ='a_k- -1 

0 2 4 I I 

vo 

Figure 15. Ground plane pressure distributions for 0 = 70", 50" 
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Figure 16. Pressure contours for 0 = 80"; broken lines indicate negative pressure 
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Figure 17. Pressure contours for 8 = 70"; broken lines indicate negative pressure 
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Figure 18. Pressure contours for ff = SO"; broken lines indicate negative pressure 
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Figure 19. Turbulent kinetic energy contours for ff = 80" 
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Figure 20. Turbulent kinetic energy contours for 8 = 70" 
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Figure 21. Turbulent kinetic energy contours for 8 = 50" 
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Figure 22. Turbulent energy dissipation rate contours for 0 = 80" 
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Figure 23. Turbulent energy dissipation rate contours for 8 = 70" 
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Figure 24. Turbulent energy dissipation rate contours for 8 = 50" 

energy increases due to the interaction between inertial and viscous forces as the oblique 
impingement angle is decreased. In contrast, the size of the right recirculation zone increases and 
the turbulent kinetic energy decreases because the right recirculation zone is dominated by 
viscous forces. The turbulent energy dissipation rates for 8 = 80", 70" and 50" are shown in 
Figures 22-24 respectively. The physical phenomena of the turbulent energy dissipation rate for 
obliquely impinging jet flow are the same as those of the turbulent kinetic energy. 

CONCLUDING REMARKS 

increases as the oblique impingement angle is decreased. 

decreased. 

1. The size of the left recirculation zone decreases and that of the right recirculation zone 

2. The maximum pressure zone moves to the left as the oblique impingement angle is 

3. A larger loss of lift force is found for smaller oblique impingement angle. 
4. For the turbulent kinetic energy, the left recirculation zone becomes larger and the right 

recirculation zone becomes smaller as the oblique impingement angle is decreased. 
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5. The turbulent energy dissipation rate shows the same physical trends as the turbulent 

6. The SIMPLE-C algorithm has some important advantages; namely, no Jacobians of co- 
kinetic energy when the oblique impingement angle is changed. 

ordinate transformation and dissipation terms are necessary. 

APPENDIX: NOMENCLATURE 

surface area of control volume 
joint coefficient 
assumed mass source in pressure correction equation 
constants 
diameter of nozzle 

turbulent kinetic energy 
Reynolds number 
source term of variable 
coefficients of linearized source term 
exit velocity of nozzle 
velocity in the x- and y-direction respectively 

transfer coefficient 
turbulent energy dissipation rate 
effective viscosity 
molecular viscosity 
eddy viscosity 
density 
transport variable 
oblique impingement angle 

Y l D  

x l D  

REFERENCES 

1. S. H. Chuang, ‘Numerical simulation of an impinging jet on a flat plate’, Int. j. numer. methodsjuids,  9, 1413-1426 

2. M. Wolfshtein, ‘Some solutions of the plane turbulent impinging jet’, J. Basic Eng., Trans. ASME, 92D, 915-922 

3. D. D. Coleman, ‘A study of free jet impinging, Part I, Mean properties of free and impinging jets’, J. Fluid Mech., 45, 

(1989). 

(1970). 

281-319 (1971). 
4. V. Parameswaran and S. A. Alpay, ‘Normal impingement of jets’, J .  Aircraft, 11, 189-191 (1974). 
5. M. J. Siclari, D. Migdal and J. L. Palcza, ‘The development of theoretical models for jet-induced effects on V/STOL 

6. M. J. Siclari, W. G. Hill Jr. and R. C. Jenkins, ‘Investigation of stagnation line and upwash formation’, AIAA Paper 

7. W. W. Bower and D. R. Kotansky, ‘A Navier-Stokes analysis of the two-dimensional ground effects problem’, AIAA 

8. W. W. Bower, D. R. Kotansky and G. H. Hoffman, ‘Computations and measurements of two-dimensional turbulent 

aircraft’, J. Aircraft, 13, 938-944 (1976). 

77-615, Palo Alto, CA, 1977. 

Paper 76-621, 1976. 

jet impingement flowfields’, Symp. Turbulent Shear Flows, Vol. 1, University Park, Pa, 1977. 
9. D. R. Kotansky and W. W. Bower, ‘A basic study of the VTOL ground effeciproblem for planar flow’, J. Aircraft, 15, 

214-221 11978). 
10. W. W. Bower, ‘R. K. Agarwal and G. R. Peters, ‘A theoretical study of two and three dimensional impinging jets’, 

11. A. Rubel, ‘Computations of jet impingement on a flat surface’, AIAA J.,  18, 168-175 (1980). 
12. R. K. Agarwal and W. W. Bower, ‘Navier-Stokes computations of turbulent compressible two-dimensional impinging 

M D R L  79-22, 1979. 

jet flowfields’, AIAA J., 20, 577-584 (1982). 



COMPUTATIONS FOR AN OBLIQUELY IMPINGING JET 653 

13. M. K. Looney and J. J. Walsh, ‘Mean-flow and turbulent characteristics of free and impinging jet flows’, J. Fluid 

14. R. W. MacCormack, ‘The effect of viscosity in hypervelocity impact cratering’, AIAA Paper 69-354, 1969. 
15. R. W. MacCormack, ‘Computational efficiency achieved by time splitting of finite difference operators’, AIAA Paper 

16. R. M. Beam and R. F. Warming, ‘An implicit factored scheme for the compressible Navier-Stokes equations’, AIAA 

17. T. H. Pulliam and J. L. Steger, ‘On implicit finite difference simulations of three dimensional flows’ AIAA Paper 78-10, 
1978. 

18. C. J. Hwang and J. L. Liu, ‘Numerical study of two-dimensional impinging jet flowfields’, Proc. 4th Natl Conf on 
Mechanical Engineering, Chinese Society of Mechanical Engineering, Hsinchu, Taiwan, R.O.C., 1987, pp. 4 1 4 9 .  

19. R. W. MacCormack, ‘A numerical method for solving the equations of compressible viscous flow’, AIAA Paper 

20. E. von Lavante and W. T. Thompkins Jr., ‘An implicit bidiagonal numericat method for solving the Navier-Stokes 

21. J. P. van Doormaal and G. D. Raithby, ‘Enhancements of the SIMPLE method for predicting incompressible fluid 

22. R. Gardon and J. C. Akfirat, ‘The role of turbulence in determining the heat-transfer characteristics of impinging jets’, 

23. F. B. Hsiao and S. H. Chuang, ‘A study of the reversed flow separation of the jet impingement on a varying angle 

24. D. G. Lllley, ‘Primitive pressure-velocity code for the computation of strongly swirling flow’, AIAA J., 14, 749-756 

25. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972. 
26. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980. 
27. B. R. Latimer and A. Pollard, ‘Comparison of pressure-velocity coupling solution algorithms’, Numer. Heat Transfer, 

28. S .  H. Chuang and S. W. Lii, ‘Combustion flowfield analysis of an afterburner with V-gutter flameholders’, Trans. 

29. B. E. Launder and D. B. Spalding, ‘The numerical computation of turbulent flows’, Comput. Methods Appl. Mech. 

30. W. P. Jones and B. E. Launder, ‘The prediction of laminarization with a two-equation model of turbulence’, Int. J. 

31. H. S. Law and J. H. Masliyah, ‘Numerical prediction of the flow field due to a continued laminar two-dimensional 

32. A. R. P. van Heiningen, A. S. Mujumdar and W. J. M. Douglas, ‘Numerical prediction of the flow field and 

Mech., 147, 397-429 (1984). 

72-154, 1972. 

J.,  16, 393-402 (1978). 

81-0110, 1981. 

equations’, AIAA J., 21, 828-833 (1983). 

flows’, Numer. Heat Transfer, 7 ,  147-163 (1984). 

Int. J .  Heat Mass Transfer, 8, 1261-1272 (1965). 

plate’, NSC (R.O.C.) Report, Contract No .  CS76-0210-DOO6-05, 1988. 

(1976). 

8, 635452 (1985). 

The Aeronautical and Astronautical Society of the Republic of China 21, 39-54 (1988). 

Eng., 3, 301-314 (1970). 

Heat Mass Transfer, 15, 301-314 (1972). 

submerged jet’, Comput. Fluids, 12, 199-215 (1984). 

impingement heat transfer due to a laminar slot jet’, Trans. ASME, J .  Heat Transfer, 98, 654-658 (1976). 


